Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

MK. Теория фотоэффекта

Материал из PhysBook
Версия от 08:19, 16 января 2014; Alsak (обсуждение | вклад) (5.3. Теория фотоэффекта)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)


5.3. Теория фотоэффекта

Все попытки объяснить явление фотоэффекта на основе законов электродинамики Максвелла, согласно которым свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались безрезультатными. Нельзя было понять, почему энергия фотоэлектронов определяется только частой света и почему лишь при малой длине волны свет вырывает электроны.

Объяснение фотоэффекта было дано в 1905 г. Эйнштейном, развившим идеи Планка о прерывистом испускании света. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Энергия E каждой порции излучения в полном соответствии с гипотезой Планка пропорциональна частоте:

\[E=h\cdot \nu ,\; \; \; (5.3.1)\] где h — постоянная Планка.

Из того факта, что свет излучается порциями, еще не вытекает прерывистая структура самого света. «Если пиво всегда продается в бутылках, содержащих пинту, — говорил Эйнштейн, — отсюда не следует, что пиво состоит из неделимых частей, равных пинте».

Лишь явление фотоэффекта показало, что свет имеет прерывистую структуру: излученная порция световой энергии сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Максимальную кинетическую энергию фотоэлектрона можно найти, применив закон сохранения энергии. Энергия порции света h∙ν идет на совершение работы выхода A, т. е. работы, которую нужно совершить для извлечения электрона из металла, и на сообщение электрону кинетической энергии. Следовательно,

\[h\cdot \nu =A+\dfrac{m\cdot \upsilon ^{2} }{2} .\; \; \; (5.3.2.)\]

Это уравнение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в световом пучке и поэтому определяет число электронов, вырванных из металла. Скорость же электронов, согласно (5.3.2), определяется только частотой света и работой выхода, зависящей от рода металла и состояния его поверхности. От интенсивности света она не зависит.

Для каждого вещества фотоэффект наблюдается лишь в том случае, если частота ν света больше минимального значения νmin. Ведь чтобы вырвать электрон из металла даже без сообщения ему кинетической энергии, нужно совершить работу выхода A. Следовательно, энергия кванта должна быть больше этой работы:

\[h\cdot \nu >A.\]

Предельную частоту νmin называют красной границей фотоэффекта. Она выражается так:

\[\nu _{\min } =\dfrac{A}{h} .\; \; \; (5.3.3)\]

Работа выхода A зависит от рода вещества. Поэтому и предельная частота νmin фотоэффекта (красная граница) для разных веществ различна.

Для цинка красной границе соответствует длина волны λmax = 3,7∙10–7 м (ультрафиолетовое излучение). Именно этим объясняется опыт по прекращению фотоэффекта с помощью стеклянной пластинки, задерживающей ультрафиолетовые лучи.

Работа выхода у алюминия или железа больше, чем у цинка. Поэтому в опыте, описанном в § 5.2, использовалась цинковая пластина. У щелочных металлов работа выхода, напротив, меньше, а длина волны λmax, соответствующая красной границе, больше. Так, для натрия λmax = 6,8∙10–7 м.

Пользуясь уравнением Эйнштейна (5.3.2), можно найти постоянную Планка h. Для этого нужно экспериментально определить частоту света ν, работу выхода A и измерить кинетическую энергию фотоэлектронов. Такого рода измерения и расчеты дают: h = 6,63∙10–34 Дж∙с. Точно такое же значение было найдено Планком при теоретическом изучении совершенно другого явления — теплового излучения. Совпадение значений постоянной Планка, полученных различными методами, подтверждает правильность предположения о прерывистом характере излучения и поглощения света веществом.

Литература

Мякишев Г.Я. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики. — М.: Дрофа, 2002. — С. 263-265.

Смотреть HD

видео онлайн

бесплатно 2022 года