Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

Слободянюк А.И. Физика 10/8.1

Материал из PhysBook

Содержание книги

Предыдующая страница

§8. Электростатические взаимодействия. Электрический заряд. Закон Кулона

8.1. Два вида электрических зарядов

Если некоторые частицы (или тела) обладают способностью принимать участие в электрических взаимодействиях, то имеет смысл приписать им некоторую характеристику, которая и будет указывать на это их свойство. Такая характеристика получила название электрический заряд. Тела, принимающие участие в электрических взаимодействиях называются заряженными. Таким образом, термин «электрически заряженный» является синонимом выражения «участвует в электрических взаимодействиях». Почему некоторые элементарные частицы обладают электрическим зарядом, а другие нет – никому не известно!

Дальнейшие рассуждения, основанные на экспериментальных данных, призваны конкретизировать эту характеристику, по возможности, сделать ее количественной.

История изучения электрических явлений длительна и полна драматизма, …

Далее мы опишем ряд простых опытов, которые можно провести дома «на кухне», или в школьной лаборатории. При их объяснении мы будем пользоваться теми знаниями, которые получены в течение многими учеными нескольких сотен лет, в результате многочисленных и разнообразных экспериментов.

Сейчас, мы воспроизведем в очень упрощенной форме некоторые этапы экспериментальных исследований, выводы из которых послужили основой современной теории электрических взаимодействий.

Для проведения экспериментов, прежде всего, следует научиться получать заряженные тела. Простейший метод достижения этой цели – электризация трением. Например, хорошо электризуется, (то есть приобретает электрический заряд) стекло, если его потереть шелком. Появление электрического заряда проявляется в том, что такая палочка начинает притягивать кусочки бумаги, волоски, пылинки и т.д.

Также можно установить, что многие другие вещества также электризуются посредством трения. Зная результат заранее, в качестве второго «источника» электричества выберем эбонитовую палочку, потертую шерстью. Назовем электрический заряд, который появляется на стекле – «стеклянным», а заряд на эбоните «смоляным[1]».

Далее нам необходим «прибор», который мог бы реагировать на присутствие электрического заряда. Для этого подвесим на нити легкий стаканчик, скрученный из кусочка фольги. Легко проверить, что этот стаканчик не заряжен - чтобы мы не подносили к нему, карандаш, руку, учебник физики и т.д., никакого действия на стаканчик не проявляется.

Поднесем к незаряженному стаканчику заряженную стеклянную электрическую палочку (рис. 141). Стаканчик притягивается к ней, как и другие мелкие тела. По углу отклонения нити (при известной массе стаканчика и длине нити) можно даже рассчитать силу притяжения. Если стаканчик не соприкоснулся с заряженной палочкой он остается незаряженным, что легко можно проверить экспериментально. Если же стаканчик прикоснется к заряженной палочке, то он резко оттолкнется от нее. Если теперь убрать палочку, стаканчик окажется заряженным, что можно проверить, если поднести к нему другое незаряженное тело. Например, он будет притягиваться к поднесенной руке.

Img slob-10-8-001.jpg

Аналогичные результаты получаются, если заменить стеклянную палочку, потертую о шелк, эбонитовой палочкой, потертой о шерсть.

Таким образом, в этих экспериментах различие между «стеклянным» и «смоляным» электричеством не проявляется.

Не будем пока, обсуждать, почему незаряженный стаканчик притягивается к заряженной палочке, а заряженный стаканчик притягивается к незаряженной руке. Единственный вывод, который мы сделаем из проведенного эксперимента – в результате контакта стаканчик приобрел электрический заряд. Следовательно, электрический заряд может передаваться от одного тела к другому.

Возьмем два одинаковых стаканчика из фольги, подвесим рядом их на нитях одинаковой длины. Если стаканчики зарядить одинаково (либо с помощью стеклянной, либо с помощью эбонитовой палочки), то стаканчики отталкиваются (рис, 142). Если же стаканчики заряжены различными зарядами, то они притягиваются.

Img slob-10-8-002.jpg

Таким образом, мы доказываем, что существует, по меньшей мере, два вида электрических зарядов.

Для дальнейших экспериментов заменим «измерительные стаканчики» более совершенным прибором, который называется электрометр (рис. 143). Прибор состоит из металлического стержня и легкой металлической стрелки, которая может вращаться вокруг горизонтальной оси. Это устройство помещено в металлический корпус, закрытый стеклянными крышками. Угол отклонения стрелки можно измерять с помощью шкалы. Стержень со стрелкой закреплен в корпусе с помощью плексигласовой втулки. Стержень со стрелкой играют ту же роль, что и стаканчики из фольги в предыдущих опытах – при прикосновении заряженного тела к стержню, заряд будет перетекать на стержень и на стрелку, что приведет к ее отклонению. Причем, направление отклонения стрелки не зависит от вида сообщенного заряда.

Img slob-10-8-003.jpg

Для дальнейших экспериментов будем использовать два одинаковых электроскопа. Зарядим один из них с помощью, например, стеклянной палочки. Далее начнем соединять стержни электрометров с помощью различных материалов. При соединении стержней с помощью деревянной, незаряженных стеклянной, эбонитовой, пластмассовых палочек; текстильных нитей, никаких изменений не происходит – один электрометр остается заряженным, второй незаряженным. Если же соединить стержни с помощью металлической проволоки [2], то оказываются заряженными оба электрометра. Причем, отклонение стрелки первоначально заряженного электрометра уменьшится (рис. 144).

Img slob-10-8-004.jpg

Из результатов этого опыта можно сделать два важных вывода: во-первых, некоторые материалы (металлы) могут передавать электрический заряд, другие (стекло, пластмасса, дерево) нет; во-вторых, заряд может изменяться, быть больше или меньше. Эти же эксперименты можно повторить с использованием и второго вида («смоляного») электричества. Результаты окажутся такими же – материалы, которые проводят «стеклянное» электричество, проводят и «смоляное». Если «стеклянный» заряд перераспределяется между электрометрами, то также себя ведет и «смоляной» заряд.

Итак, мы можем разделить материалы на две группы – те, которые передают электрический заряд (эти материалы назвали проводники), и те, которые не передают электрический заряд (их назвали изоляторы). Кстати, стержень электрометра отделен от корпуса с помощью втулки из изолятора, чтобы электрический заряд не «растекался» по корпусу, а оставался на стержне и стрелке.

Различные отклонения стрелки электрометра однозначно свидетельствуют о том, что сила взаимодействия между заряженными телами может быть различной, поэтому и величины зарядов могут быть различными. Следовательно, заряд можно характеризовать некоторой численной величиной (а не так, как мы говорили ранее – «есть, или нет»).

Еще один интересный результат – если к стержню заряженного электрометра прикоснуться рукой, то электрометр разряжается – заряд исчезает. Даже на основании этих качественных наблюдений можно объяснить, куда исчезает заряд, при прикосновении руки. Человеческое тело является проводником, поэтому заряд может перетечь в тело человека.

Для подтверждения этой идеи о количественном характере заряда можно провести следующий опыт. Зарядим один электрометр – заметим угол отклонения стрелки. Соединим его со вторым электрометром – угол отклонения стрелки заметно уменьшится. Уберем контакт между приборами и рукой разрядим второй электрометр, после чего опять соединим электрометры – отклонение стрелки опять уменьшится. Таким образом, электрический заряд можно делить на части. Можно провести и обратный эксперимент – постепенно добавляя заряд электрометру.

«Смешаем» сейчас, два имеющихся вида электричества. Для этого зарядим один электрометр «стеклянным» электричеством, а второй – «смоляным», стараясь, чтобы начальные отклонения стрелок обоих электрометров были примерно одинаковыми. После этого соединим стержни электрометров металлической проволокой (на изолирующей ручке, чтобы заряды не убежали»). Результат этого опыта может вызвать удивление – оба электроскопа разрядились, или «стеклянное» и «смоляное» электричество нейтрализовали, скомпенсировали друг друга (рис. 145). Следовательно, оказывается возможным приписать различным видам заряда различные алгебраические знаки – один заряд назвать положительным, второй отрицательным. Разумно предположить, что сила взаимодействия зависит от суммарного заряда. Если первоначально электрометры были заряжены разными видами электричества, но в разной степени (отклонения стрелок – различны), а потом их соединить, то произойдет лишь частичная компенсация зарядов – стрелки будут отклонены, но в гораздо меньшей степени.

Img slob-10-8-005.jpg

Исторически сложилось, что положительным назвали «стеклянный» заряд, а «смоляной» заряд стал отрицательным [3].

Описанный нами прибор, электрометр, позволяет лишь качественно судить о величине зарядов, проводить с ним количественные измерения невозможно. Попробуйте, например, поднести к заряженному электрометру руку (не прикасаясь к стержню) – отклонение стрелки увеличится! Поднесите к незаряженному стержню заряженную палочку, не прикасаясь к стержню – стрелка отклонится, хотя электрометр не заряжен. К объяснению этих фактов мы вернемся позднее.

Примечания

  1. Во-первых, эбонит это застывшая смола, а во-вторых, такие термины являются историческими, на заре изучения электрических явлений именно так назывались различные типы электрических зарядов.
  2. При проведении этого к металлической проволоке нельзя прикасаться голыми руками – иначе электроскоп сразу разряжается. Поэтому лучше использовать металлический стержень на деревянной или пластмассовой ручке.
  3. «Смоляное» электричество ничем не хуже «стеклянного», выбор знака – чистая условность. К слову, один из полюсов магнита мы до сих пор называем «северным», а второй «южным» - то есть обходимся без положительного и отрицательного магнетизма.

Следующая страница

Смотреть HD

видео онлайн

бесплатно 2022 года