Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

SA. Электромагнитная индукция

Материал из PhysBook

Магнитный поток

Вектор магнитной индукции \(~\vec B\) характеризует силовые свойства магнитного поля в данной точке пространства. Введем еще одну величину, зависящую от значения вектора магнитной индукции не в одной точке, а во всех точках произвольно выбранной поверхности. Эту величина называется магнитным потоком и обозначается греческой буквой Φ (фи).

  • Магнитный поток Φ однородного поля через плоскую поверхность — это скалярная физическая величина, численно равная произведению модуля индукции B магнитного поля, площади поверхности S и косинуса угла α между нормалью \(~\vec n\) к поверхности и вектором индукции \(~\vec B\) (рис. 1):
\(~\Phi = B \cdot S \cdot \cos \alpha .\) (1)
Рис. 1

В СИ единицей магнитного потока является вебер (Вб):

1 Вб = 1 Тл ⋅ 1 м2.
  • Магнитный поток в 1 Вб — это магнитный поток однородного магнитного поля с индукцией 1 Тл через перпендикулярную ему плоскую поверхность площадью 1 м2.
Поток может быть как положительным, так и отрицательным в зависимости от значения угла α.
Поток магнитной индукции наглядно может быть истолкован как величина, пропорциональная числу линий вектора индукции \(~\vec B\), пронизывающих данную площадку поверхности.

Из формулы (1) следует, что магнитные поток может изменяться:

  • или только за счет изменения модуля вектора индукции B магнитного поля, тогда
    \(~\Delta \Phi = (B_2 - B_1) \cdot S \cdot \cos \alpha\) ;
  • или только за счет изменения площади контура S, тогда
    \(~\Delta \Phi = B \cdot (S_2 - S_1) \cdot \cos \alpha\) ;
  • или только за счет поворота контура в магнитном поле, тогда
    \(~\Delta \Phi = B \cdot S \cdot (\cos \alpha_2 - \cos \alpha_1)\) ;
  • или одновременно за счет изменения нескольких параметров, тогда
    \(~\Delta \Phi = B_2 \cdot S_2 \cdot \cos \alpha_2 - B_1 \cdot S_1 \cdot \cos \alpha_1\) .

Электромагнитная индукция (ЭМИ)

Открытие ЭМИ

Вам уже известно, что вокруг проводника с током всегда существует магнитное поле. А нельзя наоборот, с помощью магнитного поля создать ток в проводнике? Именно такой вопрос заинтересовал английского физика Майкла Фарадея, который в 1822 г. записал в своем дневнике: «Превратить магнетизм в электричество». И только через 9 лет эта задача была им решена.

Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа 1831 г. Первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 2).

17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 3).

В течение одного месяца Фарадей опытным путем открыл, что в замкнутом контуре возникает электрический ток при любом изменении магнитного потока через него. Полученный таким способом ток называется индукционным током Ii.

Известно, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, которую называют ЭДС индукции и обозначают Ei.

Индукционный ток Ii в контуре и ЭДС индукции Ei связаны следующим соотношением (законом Ома):

\(~I_i = -\dfrac {E_i}{R},\)

где R — сопротивление контура.

  • Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции.
    Если контур замкнут, то вместе с ЭДС индукции возникает и индукционный ток.
    Джеймс Клерк Максвелл предложил такую гипотезу: изменяющееся магнитное поле создает в окружающем пространстве электрическое поле, которое и приводит свободные заряды в направленное движение, т.е. создает индукционный ток. Силовые линии такого поля замкнуты, т.е. электрическое поле вихревое.
    Индукционные токи, возникающие в массивных проводниках под действием переменного магнитного поля, называются токами Фуко или вихревыми токами.

История

Вот краткое описание первого опыта, данное самим Фарадеем.

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута (фут равен 304,8 мм), и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая — с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, не смотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

См. так же

  1. Васильев А. Вольта, Эрстед, Фарадей //Квант. — 2000. — № 5. — С. 16-17

Правило Ленца

Русский физик Эмилий Ленц в 1833 г. сформулировал правило (правило Ленца), которое позволяет установить направление индукционного тока в контуре:

  • возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится препятствовать тому изменению внешнего магнитного потока, вызвавшее данный ток.

Или

  • индукционный ток имеет такое направление, что препятствует причине его вызывающей.

Например, при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки, т.е. вектор индукции \({\vec{B}}'\) этого поля направлен против вектора индукции \(\vec{B}\) внешнего магнитного поля. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией \({\vec{B}}'\), увеличивающее магнитный поток через витки катушки.

См. так же

  1. Чивилев В. И. Правило Ленца //Квант. — 1988. — № 5. — С. 47-49

Закон ЭМИ

Опыты Фарадея показали, что ЭДС индукции (и сила индукционного тока) в проводящем контуре пропорциональна скорости изменения магнитного потока. Если за малое время Δt магнитный поток меняется на ΔΦ, то скорость изменения магнитного потока равна \(\dfrac{\Delta \Phi }{\Delta t}\). С учетом правила Ленца Д. Максвелл в 1873 г. дал следующую формулировку закона электромагнитной индукции:

  • ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего этот контур, взятой с противоположным знаком
\(~E_i = -\dfrac {\Delta \Phi}{\Delta t}.\)
  • Эту формулу можно применять только при равномерном изменении магнитного потока.
  • Знак «минус» в законе следует из закона Ленца. При увеличении магнитного потока (ΔΦ > 0), ЭДС отрицательная (Ei < 0), т.е. индукционный ток имеет такое направление, что вектор магнитной индукции индукционного магнитного поля направлен против вектора магнитной индукции внешнего (изменяющегося) магнитного поля (рис. 4, а). При уменьшении магнитного потока (ΔΦ < 0), ЭДС положительная (Ei > 0) (рис. 4, б).
Рис. 4

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Так как ЭДС индукции Ei выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

  • магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В:
1 Вб = 1 В ∙ 1 с.

ЭДС индукции в движущемся проводнике

При движении проводника длиной l со скоростью \(\vec{\upsilon}\) в постоянном магнитном поле с вектором индукции \(\vec{B}\) в нем возникает ЭДС индукции

\(~E_i = B \cdot \upsilon \cdot l \cdot \sin \alpha,\)

где α – угол между направлением скорости \(\vec{\upsilon}\) проводника и вектором магнитной индукции \(\vec{B}\).

Причиной появления этой ЭДС является сила Лоренца, действующая на свободные заряды в движущемся проводнике. Поэтому направление индукционного тока в проводнике будет совпадать с направлением составляющей силы Лоренца на этот проводник.

С учетом этого можно сформулировать следующее для определения направления индукционного тока в движущемся проводнике (правило левой руки):

  • нужно расположить левую руку так, чтобы вектор магнитной индукции \(\vec{B}\) входил в ладонь, четыре пальца совпадали с направлением скорости \(\vec{\upsilon}\)проводника, тогда отставленный на 90° большой палец укажет направление индукционного тока (рис. 5).
Рис. 5
Если проводник движется вдоль вектора магнитной индукции, то индукционного тока не будет (сила Лоренца равна нулю).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.344- 351.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учрежде-ний с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. — Мн.: Нар. асвета, 2008. — С. 170-182.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — С. 399-408, 412-414.

Смотреть HD

видео онлайн

бесплатно 2022 года