Слободянюк А.И. Физика 10/18.1
§18. Переменный электрический ток
18.1 Генератор электрического тока.
В качестве источников переменного тока используются генераторы переменного электрического тока, принцип действия которых основан на явлении электромагнитной индукции. Работу такого генератора рассмотрим с помощью упрощенной схемы, показанной на рис. 243.
Проволочная рамка (ротор), прикрепленная к валу, может вращаться в зазоре между полюсами постоянных магнитов (которые называются статором). Выводы проволочной обмотки рамки соединены с проводящими кольцами, расположенными на валу. С этими кольцами соприкасаются скользящие контакты (щетки), с помощью которых осуществляется электрический контакт между обмоткой рамки и внешней электрической цепью, для которой генератор служит источником ЭДС. Вал соединен с некоторым двигателем (например, турбиной), который заставляет рамку вращаться с некоторой постоянной угловой скоростью ω. Для обеспечения вращения к валу постоянно прикладываться некоторый момент сил \(~\vec M\).
Будем считать, что магниты создают однородное магнитное поле индукции \(~\vec B\) (Рис. 244). Положение рамки будем характеризовать углом поворота φ, который образует нормаль \(~\vec n\) к плоскости рамки с направлением вектора индукции поля \(~\vec B\). При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток.
При равномерном вращении рамки угол поворота изменяется по закону
Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией
где S - площадь рамки, кроме того, считаем, что обмотка рамки содержит один виток. По закону электромагнитной индукции М. Фарадея ЭДС индукции, возникающая в рамке равна
Как следует из этого выражения, ЭДС индукции изменяется по гармоническому закону, с частотой равной угловой скорости вращения рамки. Таким образом, мы показали, что рассмотренное устройство действительно является источником переменной ЭДС.
Покажем теперь, что рассматриваемый генератор преобразует механическую энергию двигателя в энергию электрического тока. Пусть к генератору подключена внешняя цепь, полное сопротивление[1] которой равно R. В соответствии с законом Ома сила тока в цепи будет равна
Так как рамка с током находится в магнитном поле, то на ее стороны действуют силы Ампера, тормозящие движение рамки. Ранее мы показали, что момент сил Ампера, действующий на рамку с током, находящуюся в однородном магнитном поле, определяется формулой \(M_1 = IBS \sin \varphi\) , где φ - угол, который образует нормаль к контуру с направлением вектора индукции поля (в нашем случае, этот же угол, который фигурировал в предыдущих формулах). Учитывая зависимости угла поворота (1) и силы тока (4) от времени, получим, что, в рассматриваемом случае тормозящий момент сил Ампера зависит от времени по закону
Для вращения с постоянной угловой скоростью к рамке должен прикладываться такой же по модулю момент внешних сил, создаваемый двигателем. Таким образом, мощность, которую должен развивать двигатель, рассчитывается по формуле
Принимая во внимание выражение (4) для силы тока, полученное выражение представляется в виде
что совпадает с мощностью электрического тока, которая определяется законам Джоуля-Ленца. Итак, мы показали, что энергия индуцированного тока в точности равна работе сил, вращающих рамку генератора.
Конечно, промышленные электрические генераторы устроены сложнее, чем рассмотренный нами. Вместо рамки с одним витком используется ротор, содержащий несколько обмоток с большим числом витков, сильное магнитное поле создается статором образованном электромагнитами. Во многих генераторах электрический ток индуцируется в неподвижных обмотках, а магнитное поле создается вращающимися электромагнитами. В этом случае через подвижные контакты передается гораздо меньший электрический ток электромагнитов, чем индуцированный электрический ток.
Примечания
- ↑ В реальности обмотка генератора и внешняя цепь обладают индуктивностью, кроме того внешняя цепь может содержать элементы, обладающие электрической емкостью, поэтому расчет силы тока и его энергетических характеристик более сложен, чем рассматривается в данном разделе. Эти расчеты будут проведены в дальнейшем, здесь же мы рассматриваем простейшую ситуацию для того, чтобы продемонстрировать основную идею.