Jl. Оптические явления
84. Оптические явления в атмосфере
Атмосфера нашей планеты представляет собой достаточно интересную оптическую систему, показатель преломления которой уменьшается с высотой вследствие уменьшения плотности воздуха. Таким образом, земную атмосферу можно рассматривать как «линзу» гигантских размеров, повторяющую форму Земли и имеющую монотонно изменяющийся показатель преломления.
Это обстоятельство приводит к появлению целого ряда оптических явлений в атмосфере, обусловленных преломлением (рефракцией) и отражением (рефлекцией) лучей в ней.
Рассмотрим некоторые наиболее существенные оптические явления в атмосфере.
Атмосферная рефракция
Атмосферная рефракция — явление искривления световых лучей при прохождении света через атмосферу.
С высотой плотность воздуха (значит, и показатель преломления) убывает. Представим себе, что атмосфера состоит из оптически однородных горизонтальных слоев, показатель преломления в которых меняется от слоя к слою (рис. 299).
При распространении светового луча в такой системе он будет в соответствии с законом преломления «прижиматься» к перпендикуляру к границе слоя. Но плотность атмосферы уменьшается не скачками, а непрерывно, что приводит к плавному искривлению и повороту луча на угол α при прохождении атмосферы.
В результате атмосферной рефракции мы видим Луну, Солнце и другие звезды несколько выше того места, где они находятся на самом деле.
По этой же причине увеличивается продолжительность дня (в наших широтах на 10-12 мин), сжимаются диски Луны и Солнца у горизонта. Интересно, что максимальный угол рефракции составляет 35' (для объектов у линии горизонта), что превышает видимый угловой размер Солнца (32').
Из этого факта следует: в тот момент, когда мы видим, что нижний край светила коснулся линии горизонта, на самом деле солнечный диск находится уже под горизонтом (рис. 300).
Мерцание звезд
Мерцание звезд также связано с астрономической рефракцией света. Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.
Миражи
В жарких пустынных или степных районах и в полярных областях сильный прогрев или охлаждение воздуха у земной поверхности приводит к появлению миражей: благодаря искривлению лучей становятся видимыми и кажутся близко расположенными предметы, которые на самом деле расположены далеко за горизонтом.
Иногда подобное явление называется земной рефракцией. Возникновение миражей объясняется зависимостью показателя преломления воздуха от температуры. Различают нижние и верхние миражи.
Нижние миражи можно увидеть в жаркий летний день на хорошо прогретой асфальтовой дороге: нам кажется, что впереди на ней есть лужи, которых на самом деле нет. В данном случае мы принимаем за «лужи» зеркальное отражение лучей от неоднородно разогретых слоев воздуха, находящихся в непосредственной близости от «раскаленного» асфальта.
Верхние миражи отличаются значительным разнообразием: в одних случаях они дают прямое изображение (рис. 301, а), в других — перевернутое (рис. 301, б), могут быть двойными и даже тройными. Эти особенности связаны с различными зависимостями температуры воздуха и показателя преломления от высоты.
Радуга
Атмосферные осадки приводят к появлению в атмосфере эффектных оптических явлений. Так, во время дождя удивительным и незабываемым зрелищем является образование радуги, которое объясняется явлением различного преломления (дисперсии) и отражения солнечных лучей на мельчайших капельках в атмосфере (рис. 302).
В особо удачных случаях мы можем увидеть сразу несколько радуг, порядок следования цветов в которых взаимообратен.
Световой луч, участвующий в формировании радуги, испытывает два преломления и многократные отражения в каждой дождевой капле. В данном случае, несколько упрощая механизм образования радуги, можем сказать, что сферические дождевые капельки играют роль призмы в опыте Ньютона по разложению света в спектр.
Вследствие пространственной симметрии радуга видна в виде полуокружности с углом раствора около 42°, при этом наблюдатель (рис. 303) должен находиться между Солнцем и каплями дождя, спиной к Солнцу.
Гало
Преломление света в кристалликах льда, сопровождающееся разложением в спектр, приводит к появлению сравнительно редкого и не менее красивого оптического явления — гало (рис. 304).
Гало проявляется в виде кругов (иногда столбов, крестов) вокруг Солнца и Луны. Для появления яркого гало необходимо достаточное количество ледяных кристаллов правильной формы.
Рассеяния света
Разнообразие цветов в атмосфере объясняется закономерностями рассеяния света на частичках различных размеров. Вследствие того, что синий цвет рассеивается сильнее, чем красный, — днем, когда Солнце находится высоко над горизонтом, мы видим небо голубым. По этой же причине вблизи линии горизонта (на закате или восходе) Солнце становится красным и не таким ярким, как в зените. Появление цветных облаков также связано с рассеянием света на частичках различных размеров в облаке.
Литература
Жилко, В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летнми сроком обучения (базовый и повышенный)/ В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2008. — С. 334-337.