PhysBook
PhysBook
Представиться системе

Jl. Оптические явления

Материал из PhysBook


84. Оптические явления в атмосфере

Атмосфера нашей планеты представляет собой достаточно интересную оптическую систему, показатель преломления которой уменьшается с высотой вследствие уменьшения плотности воздуха. Таким образом, земную атмосферу можно рассматривать как «линзу» гигантских размеров, повторяющую форму Земли и имеющую монотонно изменяющийся показатель преломления.

Это обстоятельство приводит к появлению целого ряда оптических явлений в атмосфере, обусловленных преломлением (рефракцией) и отражением (рефлекцией) лучей в ней.

Рассмотрим некоторые наиболее существенные оптические явления в атмосфере.

Атмосферная рефракция

Атмосферная рефракция — явление искривления световых лучей при прохождении света через атмосферу.

С высотой плотность воздуха (значит, и показатель преломления) убывает. Представим себе, что атмосфера состоит из оптически однородных горизонтальных слоев, показатель преломления в которых меняется от слоя к слою (рис. 299).

Рис. 299. Изменение показателя преломления в атмосфере Земли

При распространении светового луча в такой системе он будет в соответствии с законом преломления «прижиматься» к перпендикуляру к границе слоя. Но плотность атмосферы уменьшается не скачками, а непрерывно, что приводит к плавному искривлению и повороту луча на угол α при прохождении атмосферы.

В результате атмосферной рефракции мы видим Луну, Солнце и другие звезды несколько выше того места, где они находятся на самом деле.

По этой же причине увеличивается продолжительность дня (в наших широтах на 10-12 мин), сжимаются диски Луны и Солнца у горизонта. Интересно, что максимальный угол рефракции составляет 35' (для объектов у линии горизонта), что превышает видимый угловой размер Солнца (32').

Из этого факта следует: в тот момент, когда мы видим, что нижний край светила коснулся линии горизонта, на самом деле солнечный диск находится уже под горизонтом (рис. 300).

Рис. 300. Атмосферная рефракция лучей на закате Солнца

Мерцание звезд

Мерцание звезд также связано с астрономической рефракцией света. Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.

Миражи

В жарких пустынных или степных районах и в полярных областях сильный прогрев или охлаждение воздуха у земной поверхности приводит к появлению миражей: благодаря искривлению лучей становятся видимыми и кажутся близко расположенными предметы, которые на самом деле расположены далеко за горизонтом.

Иногда подобное явление называется земной рефракцией. Возникновение миражей объясняется зависимостью показателя преломления воздуха от температуры. Различают нижние и верхние миражи.

Нижние миражи можно увидеть в жаркий летний день на хорошо прогретой асфальтовой дороге: нам кажется, что впереди на ней есть лужи, которых на самом деле нет. В данном случае мы принимаем за «лужи» зеркальное отражение лучей от неоднородно разогретых слоев воздуха, находящихся в непосредственной близости от «раскаленного» асфальта.

Верхние миражи отличаются значительным разнообразием: в одних случаях они дают прямое изображение (рис. 301, а), в других — перевернутое (рис. 301, б), могут быть двойными и даже тройными. Эти особенности связаны с различными зависимостями температуры воздуха и показателя преломления от высоты.

Рис. 301. Образование миражей: а — прямой мираж; б — обратный мираж

Радуга

Атмосферные осадки приводят к появлению в атмосфере эффектных оптических явлений. Так, во время дождя удивительным и незабываемым зрелищем является образование радуги, которое объясняется явлением различного преломления (дисперсии) и отражения солнечных лучей на мельчайших капельках в атмосфере (рис. 302).

Рис. 302. Образование радуги

В особо удачных случаях мы можем увидеть сразу несколько радуг, порядок следования цветов в которых взаимообратен.

Световой луч, участвующий в формировании радуги, испытывает два преломления и многократные отражения в каждой дождевой капле. В данном случае, несколько упрощая механизм образования радуги, можем сказать, что сферические дождевые капельки играют роль призмы в опыте Ньютона по разложению света в спектр.

Вследствие пространственной симметрии радуга видна в виде полуокружности с углом раствора около 42°, при этом наблюдатель (рис. 303) должен находиться между Солнцем и каплями дождя, спиной к Солнцу.

Рис. 303. Условия образования радуги

Гало

Преломление света в кристалликах льда, сопровождающееся разложением в спектр, приводит к появлению сравнительно редкого и не менее красивого оптического явления — гало (рис. 304).

Рис. 304. Гало

Гало проявляется в виде кругов (иногда столбов, крестов) вокруг Солнца и Луны. Для появления яркого гало необходимо достаточное количество ледяных кристаллов правильной формы.

Рассеяния света

Разнообразие цветов в атмосфере объясняется закономерностями рассеяния света на частичках различных размеров. Вследствие того, что синий цвет рассеивается сильнее, чем красный, — днем, когда Солнце находится высоко над горизонтом, мы видим небо голубым. По этой же причине вблизи линии горизонта (на закате или восходе) Солнце становится красным и не таким ярким, как в зените. Появление цветных облаков также связано с рассеянием света на частичках различных размеров в облаке.

Литература

Жилко, В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летнми сроком обучения (базовый и повышенный)/ В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2008. — С. 334-337.