Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

Kvant. Герц

Материал из PhysBook

Васильев А. Один Герц //Квант. — 2000. — № 2. — С. 10-11.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Колебательные процессы принадлежат к наиболее распространенным в природе. Частота колебаний измеряется в герцах, а герц представляет собой одно колебание в секунду. Примерно с такой частотой бьется человеческое сердце, и электромагнитные импульсы такой частоты излучают загадочные космические объекты — пульсары. Разумеется, органический и неорганический миры дают еще множество примеров более низкочастотных или более высокочастотных колебаний.

Свое название единица измерения частоты получила в честь выдающегося немецкого физика Генриха Герца. Он родился в Гамбурге, а научную деятельность начал в Берлинском университете под руководством Гельмгольца. Именно Гельмгольц в 1879 году предложил Герцу заняться работой по изучению поляризации диэлектриков, которая, в конечном счете, и привела его к открытию электромагнитных волн. Поначалу, однако, эта работа не заинтересовала Герца, и вплоть до 1884 года он занимался самыми разными вопросами — от изучения условий формирования облаков до теории морских приливов. Хотя и в этих исследованиях Герц проявил незаурядные способности к теории и эксперименту, получаемые им результаты никоим образом не удовлетворяли его. К счастью для науки, период разочарований сменился творческим взлетом, результатом которого стало одно из наиболее важных открытий в истории человечества.

Img Kvant H-2000-02-001.jpg

Экспериментируя с короткими, почти замкнутыми, цепями, Герц сумел получить намного более частые электрические колебания, чем те, которые умели создавать другие экспериментаторы. Собранная Герцем схема (см. рисунок) представляла собой искровой разрядник, состоявший из двух прямолинейных расположенных в одну линию проводов с металлическими шарами на концах. Эта цепь подключалась к источнику высокого напряжения, при работе которого в промежутке между проводами возникала искра длиной в несколько миллиметров. Вторая цепь состояла из провода, согнутого в виде прямоугольника; между хорошо зачищенными концами провода оставался маленький зазор, регулировавшийся микрометрическим винтом. При проскакивании искры в первой цепи во второй также наблюдались искорки длиной до нескольких десятых долей миллиметра. Видеть их можно было лишь в затемненной комнате с помощью специальной увеличительной трубы, т.е. наблюдение искр было делом тонким и сложным, но именно они были решающим звеном опытов Герца. Возникновение искр во второй цепи Герц объяснил появлением напряжения между концами провода, а экспериментируя с размерами этой цепи, он пришел к мысли о том, что в цепи происходили колебания необыкновенно высокой частоты.

Сначала в экспериментах Герца первая и вторая цепи соединялись между собой проводом, однако вскоре он перешел к несвязанным, разнесенным в пространстве контурам. И в этом случае при определенных размерах второй цепи в ней проскакивали искры, длина которых зависела от расстояния до первой цепи. Проведя множество испытаний с контурами, обладавшими различными периодами собственных колебаний, Герц обнаружил явление резонанса, когда при определенном расстоянии между контурами длина искры во втором контуре достигала максимума. Схема опыта Герца содержала все основные элементы современной радиосвязи: передатчик электромагнитных волн и их приемник. Развитие этой схемы было лишь делом времени и изобретательской мысли, что обусловило колоссальное практическое значение экспериментов Герца.

Возможность получения и регистрации высокочастотных колебаний позволила Герцу взяться за решение задачи, предложенной ему некогда Гельмгольцем. В ходе экспериментов по поляризации диэлектриков, а затем измерений скорости распространения электромагнитного взаимодействия в воздухе Герц понял, что имеет дело с электромагнитными волнами, предсказанными теорией Максвелла, и занялся целенаправленной проверкой ее выводов.

Теорию электромагнетизма Максвелл создал на основе физических представлений Фарадея, оформив их в виде системы математических уравнений. Как известно, электрический ток создает вокруг себя магнитное поле, магнитные линии которого—замкнутые кривые. В свою очередь, согласно закону Фарадея, изменяющееся магнитное поле создает электрический ток в проводниках. Максвелл дополнил существовавшую в то время систему взглядов положением о полном равноправии электрического и магнитного полей в отношении их способности порождать друг друга. Его дополнение заключалось в постулировании наряду с прежней причиной возникновения магнитного поля (электрический ток) еще одной причины - изменения электрического поля. Благодаря симметрии электрического и магнитного полей в теории Максвелла, становился возможным непрерывный процесс: переменное магнитное поле создает переменное электрическое поле, которое в свою очередь создает переменное магнитное поле, и т.д. В результате получается цепочка полей, представляющая собой электромагнитную волну. На основе этой концепции Максвелл вывел уравнения для электрического и магнитного полей, которые описывали распространение электромагнитных волн. Скорость распространения зависела от электрических и магнитных свойств среды, и, в частности, в пустоте (или в воздухе) она равнялась скорости света. Отсюда вытекала электромагнитная теория света как составная часть теории Максвелла. Из уравнений Максвелла следовало также, что электромагнитная волна распространяется в направлении, перпендикулярном обоим полям.

Надо сказать, что ко времени создания теории Максвелла существовали и другие теории электромагнетизма. Только эксперимент мог ответить на вопрос об истинности той или иной версии. Изучение электромагнитных волн в воздухе Герц проводил, исследуя картину электрического поля, создаваемого вибратором. Он помещал вибратор в центре большой комнаты, а резонатор переносил с места на место, и в каждом месте отыскивал такое расположение, при котором искра в резонаторе была максимальной. Найденные положения он отмечал на полу мелом. Многократно повторив такие манипуляции, он получил картину силовых линий электрического поля и обнаружил, что вдоль линии колебаний вибратора поле уменьшается гораздо быстрее, чем в перпендикулярном направлении. Это было хорошим подтверждением теории Максвелла.

В процессе экспериментов Герц обнаружил также, что резонатор позволяет наблюдать стоячую волну, возникающую в результате отражения от стен комнаты. Из расположения узлов и пучностей ему удалось определить длину электромагнитной волны, а оценив частоту вибратора, и рассчитать скорость света. Несмотря на то, что использовавшиеся Герцем приборы были необычайно просты, оценка скорости света в воздухе оказалась очень близкой к ее истинному значению 300000 км/с.

Последнюю серию опытов в этой области Герц посвятил установлению родства между электромагнитными и световыми волнами. Он решил повторить с электромагнитными волнами классические оптические эксперименты по прямолинейному распространению, отражению, преломлению и поляризации волн. Для постановки этих опытов вместо оптических зеркал Герц использовал вогнутые зеркала из цинка, а призму изготовил из асфальта с основанием в виде равнобедренного треугольника. Вместо турмалиновой пластинки для изучения поляризации волн Герцу служила деревянная рама с натянутыми на ней медными проволоками.

В результате проведения «оптических» опытов Герц надежно установил, что исследованные им «электрические лучи» аналогичны световым с очень большой длиной волны, и, следовательно, свет и электродинамическое волновое движение суть тождественные явления. Проведенная Герцем работа произвела впечатление даже на людей, далеких от физики. Будучи еще молодым человеком, он стал одним из самых популярных людей своего времени. Выполнив целый ряд элегантных физических экспериментов, Герц один стяжал всю славу по экспериментальному подтверждению теории Максвелла. Открытие и изучение электромагнитных волн вызвало к жизни новую большую область техники — электронные коммуникации, которым впоследствии было суждено изменить весь путь развития цивилизации.

Смотреть HD

видео онлайн

бесплатно 2022 года