Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео.

PhysBook
PhysBook
Представиться системе

Kvant. Диэлектрики, полупроводники

Материал из PhysBook

Кикоин А.К. Диэлектрики, полупроводники, полуметаллы, металлы //Квант. — 1984. — № 2. — С. 25-29.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В классической физике было принято все вещества по их электрическим свойствам разделять на проводники и диэлектрики («Физика 9», §§44 и 46). Современная физика различает еще два промежуточных состояния — полупроводники («Физика 9», § 78) и полуметаллы. Лишь с появлением квантовой механики стало ясно, в чем различия между всеми этими типами веществ. В этой заметке мы постараемся вкратце описать суть современной квантово-механической теории, объясняющей электрические свойства твердых тел.

Твердое тело состоит из атомов, образующих кристаллическую решетку. Атомы удерживаются в решетке силами взаимодействия электрически заряженных атомных частиц — положительно заряженных ядер и отрицательно заряженных электронов. Электрический ток в кристалле — это движение электронов, которое подчиняется законам квантовой механики. Согласно этим законам, электроны и в отдельном атоме, и в кристалле могут обладать лишь определенными (разрешенными) значениями энергии, или, иными словами, находиться на определенных энергетических уровнях. Чем выше уровень, тем большей энергии он соответствует.

Рис. 1

В атоме эти уровни расположены довольно далеко один от другого — принято говорить, что уровни образуют дискретный энергетический спектр (рис. 1). При определенных условиях электроны могут переходить с одного уровня на другой, разрешенный, уровень. Электрон с данной энергией может двигаться только по замкнутой траектории — орбите — вокруг ядра[1].

Когда атомы объединяются в кристалл, часть электронов по-прежнему остается на своих атомных орбитах, но наиболее удаленные от ядра электроны получают возможность двигаться по всему кристаллу благодаря тому, что внешние орбиты соседних атомов перекрываются. А это значит, что и энергетические уровни, раньше принадлежавшие отдельным атомам, становятся «общими» для всего кристалла. Вместо дискретных уровней в кристалле образуются энергетические зоны, состоящие из очень близко расположенных уровней. Электроны, которые находятся на этих «обобществленных» уровнях, называются валентными электронами.

Валентные электроны движутся по орбитам, охватывающим весь кристалл, и, казалось бы, могут проводить электрический ток. Однако если бы все было так просто, все твердые тела были бы хорошими проводниками (металлами). Законы квантовой механики делают картину гораздо более сложной и разнообразной.

Во-первых, энергетические зоны разделены промежутками, в которых нет ни одного энергетического уровня. Эти промежутки называются запрещенными зонами. Во-вторых, электроны подчиняются так называемому принципу Паули, согласно которому на каждом уровне в данном состоянии может находиться только один электрон. При наинизшей возможной температуре (равной абсолютному нулю) энергетические уровни последовательно снизу вверх (то есть начиная с наименьших значений энергии) заполняются электронами в соответствии с принципом Паули, а уровни с более высокими энергиями остаются свободными. Различная степень заполнения энергетических зон, а также различия в их относительном расположении и позволяют разделить все твердые тела на диэлектрики, полупроводчики, полуметаллы и металлы.

Диэлектрики.

Рис. 2

При T = 0 валентные электроны целиком заполняют наинизшую зону, называемую валентной зоной (рис. 2). Свободных уровней в ней нет, а следующая разрешенная зона — зона проводимости — отделена от нее широкой запрещенной зоной. Если к такому образцу приложить электрическое поле, оно не сможет ускорить электроны, то есть создать электрический ток, так как ускорить электрон — значит сообщить ему дополнительную энергию, а, согласно законам квантовой механики, это можно сделать, только переведя его на более высокий энергетический уровень. Но принцип Паули запрещает электронам занимать уже занятые уровни, а попасть в следующую разрешенную зону, которая совершенно пуста, они не могут, потому что энергия, полученная от электрического поля, много меньше ширины Δ запрещенной зоны.

При температуре, отличной от нуля, электроны, в принципе, могут перейти в зону проводимости и стать носителями электрического тока. Однако для того чтобы число электронов, перешедших в эту зону, было достаточно большим, нужно диэлектрик нагреть до такой высокой температуры, что он расплавится, прежде чем ток достигнет измеримой величины. При комнатной температуре ток в диэлектрике практически не течет.

Полупроводники.

Рис. 3

От диэлектрика полупроводник отличается только тем, что ширина Δ запрещенной зоны, отделяющей валентную зону от зоны проводимости, у него много меньше (в десятки раз). При T = 0 валентная зона в полупроводнике, как и в диэлектрике, целиком заполнена, и ток по образцу течь не может. Но благодаря тому, что энергия Δ невелика, уже при незначительном повышении температуры часть электронов может перейти в зону проводимости (рис. 3). Тогда электрический ток в веществе станет возможным, причем сразу по двум «каналам».

Во-первых, в зоне проводимости электроны, приобретая энергию в электрическом поле, переходят на более высокие энергетические уровни. Во-вторых, вклад в электрический ток дают... пустые уровни, оставленные в валентной зоне электронами, ушедшими в зону проводимости. Действительно, принцип Паули разрешает любому электрону занять освободившийся уровень в валентной зоне. Но, заняв этот уровень, он оставляет свободным свой собственный уровень и т. д. Если следить не за движением электронов по уровням в валентной зоне, а за движением самих пустых уровней, то оказывается, что эти уровни, имеющие научное название дырки, тоже становятся носителями тока. Число дырок, очевидно, равно числу электронов, ушедших в зону проводимости (так называемых электронов проводимости), но дырки обладают положительным зарядом, потому что дырка — это отсутствующий электрон.

Таким образом, в полупроводнике электрический ток — это ток электронов в зоне проводимости и дырок в валентной зоне. Такая проводимость полупроводника называется собственной.

Электроны и дырки при движении по кристаллу взаимодействуют с атомами кристаллической решетки, теряя при этом свою энергию. С этими потерями связано электрическое сопротивление вещества. При увеличении температуры потери энергии возрастают, так что сопротивление полупроводника должно было бы с ростом температуры тоже увеличиваться. Но при повышении температуры растет число электронов, переходящих в зону проводимости, а следовательно, и число дырок r валентной зоне. Это значит, что растет (и очень быстро) общее число носителей тока. Из-за этого сопротивление полупроводника с повышением температуры не растет, а падает. Полупроводник и можно определить как вещество, практически не проводящее ток при абсолютном нуле температур, но сопротивление которого с ростом температуры резко падает.

В природе, однако, полупроводников с собственной проводимостью не существует: в них всегда имеются примеси других веществ, которые и определяют их электрические свойства. Наличие примесей приводит к тому, что в запрещенной зоне полупроводника появляются дополнительные энергетические уровни, с которых или на которые тоже возможны электронные переходы. Широкое применение полупроводников в технике стало возможным только после того, как технологи научились управлять содержанием примесей в полупроводниках и по своему усмотрению делать их проводимость (примесную проводимость) почти чисто электронной или чисто дырочной.

Рис. 4

Оказывается, можно подобрать такие примеси, атомы которых легко отдают электроны. Освободившиеся при этом дополнительные уровни энергии располагаются внутри запрещенной зоны полупроводника вблизи ее верхнего края (рис. 4, а). Такие примеси называются донорными примесями, а уровни — донорными уровнями. Из рисунка 4, а видно, что при одной и той же температуре электронам с таких уровней гораздо легче перейти в зону проводимости, чем электронам из валентной зоны, поэтому примесные уровни и станут основными поставщиками электронов в зону проводимости. Но при этом в валентной зоне дырок появляться не будет, и проводимость полупроводника станет почти чисто электронной. Такие полупроводники называются полупроводниками n-типа.

Существуют и такие примеси, атомы которых легко присоединяют к себе электроны (акцепторные примеси). Дополнительные уровни их электронов (акцепторные уровни) тоже располагаются внутри запрещенной зоны полупроводника, но вблизи ее дна (рис. 4, б). В этом случае электронам из валентной зоны легче перейти на акцепторные уровни примеси, чем в зону проводимости. Тогда в валентной зоне появятся дырки без того, чтобы в зоне проводимости появились электроны. Получится полупроводник с почти чисто дырочной проводимостью, или полупроводник p-типа.

Наиболее известные полупроводниковые материалы — это германий и кремний, а их главные технические применения как раз и связаны с возможностью создания образцов n- и p-типов («Физика 9», с. 212).

Полуметаллы.

Рис. 5

Это вещества, в которых между зоной проводимости и валентной зоной зазор отсутствует, так что они слегка перекрываются (рис. 5). В таких веществах уже при нулевой температуре имеется небольшое количество электронов и дырок, но электропроводность их очень слабо зависит от температуры.

Полуметаллы в природе встречаются редко, из них наиболее известны висмут, сурьма и их сплавы.

Металлы.

Рис. 6

Электроны в металлах окончательно «забывают» свое атомное происхождение, их уровни образуют одну очень широкую зону. Она всегда заполнена лишь частично (число электронов меньше числа уровней) и потому может называться зоной проводимости (рис. 6). Ясно, что в металлах ток может течь и при нулевой температуре. Более того, с помощью квантовой механики можно доказать, что в идеальном металле (решетка которого не имеет дефектов) при T = 0 ток должен течь без сопротивления [2]!

К сожалению, идеальных кристаллов не бывает, а нулевой температуры достичь невозможно. В действительности электроны теряют энергию, взаимодействуя с колеблющимися атомами решетки, так что сопротивление реального металла растет с температурой (в отличие от сопротивления полупроводника). Но самое главное — это то, что при любой температуре электропроводность металла значительно выше электропроводности полупроводника потому, что в металле гораздо больше электронов, способных проводить электрический ток.

Примечания

  1. Орбита в квантовой механике, в отличие от классической, понятие условное. Об определенной «размытой» орбите электрона можно говорить лишь приближенно, и ее замкнутость означает только то, что электрон «в среднем» находится на определенном расстоянии от ядра.
  2. Мы не касаемся здесь сверхпроводников, которые теряют сопротивление при температурах, отличных от абсолютного нуля.

Смотреть HD

видео онлайн

бесплатно 2022 года