Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

MK. Радиоактивные излучения

Материал из PhysBook

7.4. Альфа-, бета- и гамма-излучения

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Радиоактивный препарат помещался на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу (рис. 7.9). Вся установка размещалась в вакууме.

Рис. 7.9

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно, точно против канала. В магнитном поле пучок распадался натри пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательная компонента излучения отклонялась магнитным полем гораздо больше, чем положительная. Третья составляющая не отклонялась магнитным полем. Положительно заряженная компонента получила название альфа-лучей,отрицательно заряженная — бета-лучей и нейтральная — гамма-лучей (α-лучи, β-лучи,γ-лучи).

Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают α-лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего α-излучению.

Гораздо меньше поглощаются при прохождении через вещество β-лучи. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи.

Как и в случае рентгеновских лучей, интенсивность поглощения γ-лучей увеличивается с ростом атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении через такую пластину их интенсивность убывает лишь вдвое.

Физическая природа α-, β- и γ-лучей, очевидно, различна.

Гамма-лучи

По своим свойствам γ-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводит на мысль, что γ-лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция γ-лучей на кристаллах и измерена длина волны. Она оказалась очень малой — от 10–8 до 10–11 см.

На шкале электромагнитных волн у-лучи непосредственно следуют за рентгеновскими. Скорость распространения в вакууме у γ-лучей такая же, как у всех электромагнитных волн, — около 300000 км/с.

Бета-лучи

С самого начала α- и β-лучирассматривались как потоки заряженных частиц. Проще всего было экспериментировать с β-лучами,так как они сильно отклоняются как в магнитном, так и в электрическом поле.

Основная задача состояла в определении заряда и массы частиц. При исследовании отклонения β-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости β-частиц, испущенных данным радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями.

Альфа-частицы

Труднее оказалось выяснить природу а-частиц, так как они слабо отклоняются магнитным и электрическим полями.

Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в электрическом и магнитном полях. Оно оказалось примерно в 2 раза меньше, чем у протона — ядра атома водорода. Для определения массы α-частицы нужно было измерить еще ее заряд.

Это было сделано лишь после изобретения счетчика Гейгера. С его помощью подсчитывалось число частиц, попадающих в единицу времени внутрь металлического цилиндра, соединенного с электрометром (рис. 7.10). Сквозь очень тонкое окошко α-частицы могут проникать внутрь счетчика и регистрироваться им. Электрометр позволяет определить суммарный заряд α-частиц, испущенных за определенный интервал времени. Такого рода опыты показали, что заряд α-частицы равен удвоенному элементарному заряду. Следовательно, ее масса в 4 раза превосходит массу атома водорода, т. е. равна массе атома гелия. Таким образом, α-частица оказалась ядром атома гелия[1].

Рис. 7.10

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном а-распаде образуется гелий. Собирая α-частицы внутри специального резервуара на протяжении нескольких дней, Резерфорд с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая α-частица захватывала два электрона и превращалась в атом гелия).

Примечание

  1. В то время (первое десятилетие XX в.) атомное ядро еще не было открыто. Поэтому Резерфорд говорил об ионе атома гелия.

Литература

Мякишев Г.Я. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики. — М.: Дрофа, 2002. — С. 349-351.

Смотреть HD

видео онлайн

бесплатно 2022 года