Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

SA. Проводники и диэлектрики

Материал из PhysBook

Проводники в электростатическом поле

  • Проводниками называются вещества, по которым могут свободно перемещаться электрические заряды.
    Термин «проводник» является переводом с английского слова сonductor, который ввел Ж.Т.Дезагюлье в 1739 г. для обозначения «тел, действующих как каналы для транспорта электрической силы».

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

  • Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.
Рис. 1

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

Рис. 2

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Рис. 3

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 - E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q:

\(F = q \cdot E.\)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 - E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

  • Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

  • Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Диэлектрики в электростатическом поле

  • Диэлектрики (изоляторы) — это вещества, в которых практически отсутствуют свободные носители зарядов.
    Термин «диэлектрик» происходит от греческого слова dia — через, сквозь и английского слова electric — электрический. Этот термин ввел М. Фарадей в 1838 г. для обозначения веществ, в которые проникает электрическое поле.

Резкой границы между проводниками и диэлектриками нет, так как все вещества в той или иной степени способны проводить электрический ток. Но если в веществе свободных зарядов в 1015-1020 раз меньше, чем в металлах, то в таких случаях слабой проводимостью вещества можно пренебречь и считать его идеальным диэлектриком.

Почти все заряженные частицы внутри диэлектрика связаны между собой и не способны передвигаться по объему тела. Они могут только незначительно смещаться относительно своих равновесных положений.

Диэлектриками являются все неионизированные газы, многие чистые жидкости (дистиллированная вода, масла, бензины) и твердые тела (пластмассы, стекла, керамика, кристаллы солей, сухая древесина).

Существуют полярные и неполярные диэлектрики.

Неполярный диэлектрик

Рассмотрим схему простейшего атома – атома водорода (рис. 4).

Рис. 4

Положительный заряд атома, заряд его ядра, сосредоточен в центре атома. Вокруг ядра движется электрон со скоростью порядка 106 м/с и уже за 10–9 с успевает совершить миллион оборотов. Поэтому орбиту электрона можно рассматривать как электронное облако, расположенное симметрично относительно ядра. Следовательно, даже за очень малый промежуток времени центр распределения отрицательного заряда приходится на середину атома, т.е. совпадает с положительно заряженным ядром.

  • Диэлектрики, состоящие из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают, называются неполярными.

Примерами таких веществ являются одноатомные благородные (инертные) газы; газы, состоящие из симметричных двухатомных молекул (кислород, водород, азот); различные органические жидкости (масла, бензины); некоторые твердые тела (пластмассы).

Поместим такой диэлектрик в однородное электростатическое поле с напряженностью \(\vec E_0\) .

На отрицательно и положительно заряженные частицы начинают действовать силы, направленные в противоположные стороны (рис. 5).

Рис. 5

В результате молекула растягивается и происходит незначительное смещение центров положительного и отрицательного зарядов. Образуется система двух точечных зарядов q, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии l друг от друга (рис. 6). Такую нейтральную в целом систему зарядов называют электрическим диполем. Электрический диполь создает электрическое поле напряженностью Едi, которая направлена против напряженности внешнего поля Е0.

Рис. 6

В диэлектрике, состоящем из множества таких диполей, с напряженность Едi, общая напряженность Е становится меньше напряженности внешнего поля Е0 (рис. 7).

Рис. 7

Вследствие смещения зарядов на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (рис. 8). Внутри любого объема диэлектрика суммарный электрический заряд молекул в этом объеме равен нулю.

Рис. 8
  • Заряды, которые образуются на поверхности диэлектрика, помещенного в электрическое поле, называются связанными.
  • Смещение связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием приложенного внешнего электростатического поля называют поляризацией.
  • Поляризация диэлектрика, в результате которой происходит смещение электронных оболочек, называется электронной поляризацией.

Электронная поляризация происходит в атомах любого диэлектрика, помещенного в электрическое поле.

Полярный диэлектрик

Многие диэлектрики (H2O, H2S, NO2) образованы из молекул, каждая из которых является электрическим диполем и в отсутствии внешнего электрического поля. Такие молекулы и образованные ими диэлектрики называются полярными.

Например, молекула поваренной соли NaCl. При образовании молекулы единственный валентный электрон натрия захватывается хлором. Оба нейтральных атома превращаются в систему из двух ионов с зарядами противоположных знаков. Центр положительного заряда молекулы приходится на ион натрия (Na), а отрицательного – на ион хлора (Cl) (рис. 9).

Рис. 9

При отсутствии внешнего поля молекулярные диполи из-за теплового движения расположены хаотично, поэтому их суммарный дипольный момент равен нулю.

Поместим полярный диэлектрик в однородное электростатическое поле с напряженностью \(\vec E_0\) . Со стороны этого поля на диполь будут действовать две силы, одинаковые по модулю и противоположные по направлению. Эти силы создают вращающий момент, стремящийся повернуть диполь так, чтобы его ось была направлена по линии напряженности поля (рис. 10). Но этому препятствует тепловое движение. В результате молекула поворачивается лишь частично (рис. 11).

Поворот электрических диполей приводит к появлению еще одного электрического поля с напряженностью Едi, которая направлена против напряженности внешнего поля Е0. В таком диэлектрике общая напряженность Е становится меньше напряженности внешнего поля Е0.

Вследствие поворота молекул на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (см. рис. 11). Такие заряды называются связанные.

Внутри диэлектрика отрицательные и положительные заряды диполей компенсируют друг друга и средний электрический заряд диэлектрика равен нулю.

  • Такой механизм поляризации называется ориентационным.
  • Полная ориентация диполей (состояние насыщения) может быть достигнута лишь в сильных полях при температурах, близких к абсолютному нулю.
  • Для насыщение при комнатных температурах необходимы поля напряженностью 1010 – 1012 В/м. Но чаще всего, даже при значительно меньших напряженностях, наступает пробой диэлектрика.

У полярных диэлектриков, наряду с ориентационной поляризацией, наблюдается и электронная поляризация. Однако эффект ориентации диполей на несколько порядков превосходит эффект смещения зарядов, поэтому последним часто пренебрегают.

Диэлектрическая проницаемость

Таким образом, во всех диэлектриках, помещенных в электростатическое поле, происходит уменьшение напряженности этого поля. Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.

  • Диэлектрическая проницаемость ε — это физическая величина, равная отношению модуля напряженности электрического поля E0 в вакууме к модулю напряженности электростатического поля Ε внутри однородного диэлектрика
\(~\varepsilon = \dfrac{E_0}{E} .\)

Диэлектрическая проницаемость некоторых веществ приведены в таблице 1.

Таблица 1.

Диэлектрическая проницаемость
Вещество ε Вещество ε
Бензин 2,0 Масло 2,5
Вакуум, воздух 1,0 Парафин 2,0
Вода дистиллированная 81 Резина 4,5
Дерево сухое 2,9 Спирт 26
Капрон 4,3 Стекло 7,0
Керосин 2,1 Фарфор 5,6
Лед 70 Эбонит 3,1

В диэлектриках при расчете кулоновских сил, напряженностей и потенциалов полей необходимо учитывать ослабление электрического поля в ε раз. Например,

\(F=\dfrac{k\cdot \left|q_{1} \right|\cdot \left|q_{2} \right|}{\varepsilon \cdot r^{2} } ,\, \, \, E=\dfrac{k\cdot \left|q\right|}{\varepsilon \cdot r^{2} } ,\, \, \, \varphi =\dfrac{k\cdot q}{\varepsilon \cdot r}.\)

Смотреть HD

видео онлайн

бесплатно 2022 года