Скачать + смотреть онлайн

видео 2022

бесплатно в хорошем качестве HD

Строго запрещено смотреть анал видео. Крутые - все самые шикарные мамки видео. Мега лучший пердос video.

PhysBook
PhysBook
Представиться системе

Kvant. Магнитный момент тока

Материал из PhysBook

Кикоин А.К. Магнитный момент тока //Квант. — 1986. — № 3. — С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I, если он помещен в однородное магнитное поле с индукцией \(~\vec B\), действует сила \(~\vec F\), равная по модулю

\(~F = BIl \sin \alpha\) ,

где α — угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник — это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее — на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b, по которой в указанном стрелками направлении течет ток I.

Рис. 1

Рамка помещена в однородное магнитное поле с индукцией \(~\vec B\) так, что в начальный момент вектор \(~\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(~\frac{BIab}{2}\) (\(~\frac{b}{2}\) — плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab, или, поскольку произведение ab равно площади S рамки,

\(~M = BIab = BIS\) .

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(~\vec B\) (рис. 2).

Рис. 2

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу — в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

\(~M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS — это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м2.

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,— нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент — одно из самых важных понятий в физике.

Смотреть HD

видео онлайн

бесплатно 2022 года